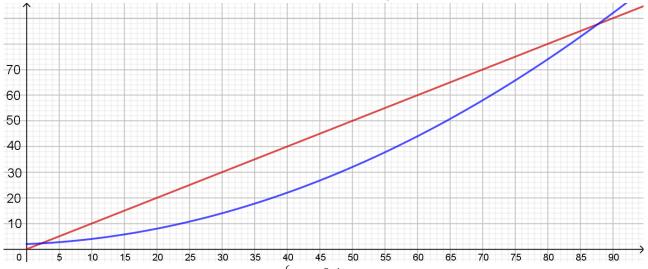


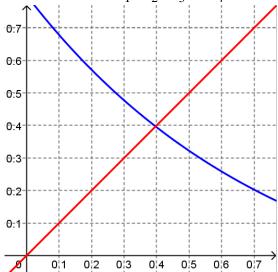
Contrôle de Mathématiques

Toute la suite des hommes doit être considérée comme un même homme... (Blaise Pascal) Le bonheur de demain n'existe pas. Le bonheur, c'est tout de suite ou jamais. (René Barjavel)


Exercice 1 On définit comme suit une suite
$$(u_n)$$
:
$$\begin{cases} u_1 = 5 \\ u_{n+1} = 2u_n - 2n + 1 \end{cases}$$
, $n \in \mathbb{N}^*$ (3 points)

- 1) Calculer les premiers termes u_2 , u_3 et u_4 en décrivant les calculs.
- 2) Déterminer avec votre calculatrice la valeur exacte de u_{24} .

Exercice 2 (6 points)


1) On considère la suite (u_n) définie par : $\begin{cases} u_0 = 80 \\ u_{n+1} = f(u_n) \end{cases}$

Construire avec précision la valeur des termes u_1 à u_5 (vous laisserez les traits de construction). Vous indiquerez sur votre copie les valeurs de u_1 , u_2 , u_3 , u_4 et u_5 obtenues par lecture graphique.

2) On considère la suite (u_n) définie par : $\begin{cases} u_0 = 0, 1 \\ u_{n+1} = g(u_n) \end{cases}$

Construire avec précision la valeur des termes u_1 à u_4 (vous laisserez les traits de construction). Vous indiquerez sur votre copie les valeurs de u_1 , u_2 , u_3 et u_4 obtenues par lecture graphique.

Exercice 3 E	Etudier le sens de va	ariation des suites	(u_n)	définies ci-dessous :	(8 points)
--------------	-----------------------	---------------------	---------	-----------------------	------------

a) $u_n = 2 - 5n \quad (n \in \mathbb{N})$

- b) $u_n = \frac{n-1}{n+9} (n \in \mathbb{N})$
- c) $u_n = n^2 8n + 15 \ (n \in \mathbb{N})$
- d) $u_n = 0, 4^n \ (n \in \mathbb{N})$

Exercice 4 (3 points)

Suite à un héritage, Magalie place la somme de 30 000 euros à un taux fixe de 3 %.

On peut décrire cette situation à l'aide de la suite suivante : $\begin{cases} u_0 = 30000 \\ u_{n+1} = 1,03 \times u_n \end{cases}$

1) Compléter le programme python permettant de savoir quel sera le montant du placement au bout de 5 ans :

u = 30000 for i in u print

2) Magalie souhaite savoir dans combien d'années son capital aura doublé. Compléter le programme python suivant permettant de répondre à cette question :

3) Question bonus : avec votre calculatrice, déterminer le nombre d'années recherché à la question précédente.

Auto-évaluation:.....

Contrôle de Mathématiques - CORRIGE - M. Quet

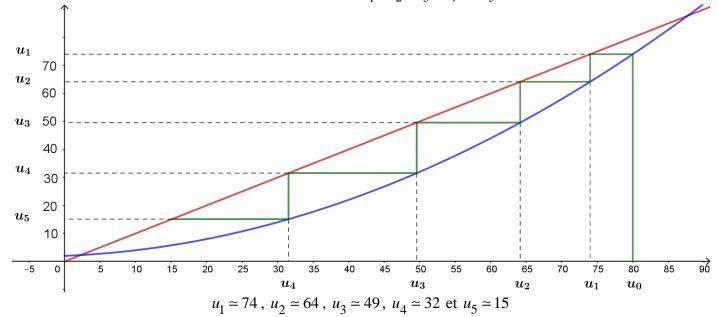
On définit comme suit une suite (u_n) : $\begin{cases} u_1 = 5 \\ u_{n+1} = 2u_n - 2n + 1 \end{cases}, \ n \in \mathbb{N}^*$ **Exercice 1** (3 points)

1) Calculer les premiers termes u_2 , u_3 et u_4 en décrivant les calculs.

$$\begin{aligned} u_2 &= u_{1+1} = 2u_1 - 2 \times 1 + 1 = 2 \times 5 - 2 + 1 = 9 \\ u_3 &= u_{2+1} = 2u_2 - 2 \times 2 + 1 = 2 \times 9 - 4 + 1 = 15 \\ u_4 &= u_{3+1} = 2u_3 - 2 \times 3 + 1 = 2 \times 15 - 6 + 1 = 25 \end{aligned}$$

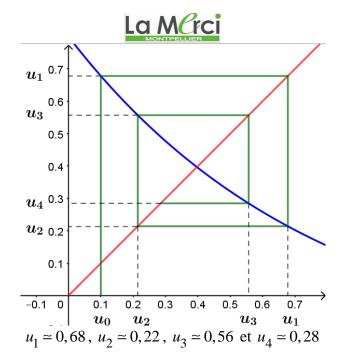
2) Déterminer avec votre calculatrice la valeur exacte de u_{24} .

TYPE:	SUITE(n)	SUITE(n+1)	SUITE(n+2)				
nMin=1							
\u(n+1)目2*u(n)−2*n+1							
u(1))5						


CONFIG TABLE DébutTb1=24

n	u			
24	1.68E7			
25	3.36E7			
26	6.71E7			
27	1.34E8			
28	2.68E8			
29	5.37E8			
30	1.07E9			
31	2.15E9			
32	4.29E9			
33	8.59E9			
34	1.7E10			
u(24)=16777265				

Exercice 2 (6 points)


1) On considère la suite (u_n) définie par : $\begin{cases} u_0 = 80 \\ u_{n+1} = f(u_n) \end{cases}$

Vous indiquerez sur votre copie les valeurs de u_1 , u_2 , u_3 , u_4 et u_5 obtenues par lecture graphique.

2) On considère la suite (u_n) définie par : $\begin{cases} u_0 = 0, 1 \\ u_{n+1} = g(u_n) \end{cases}$

Construire avec précision la valeur des termes u_1 à u_4 (vous laisserez les traits de construction). Vous indiquerez sur votre copie les valeurs de u_1 , u_2 , u_3 et u_4 obtenues par lecture graphique.

Exercice 3 Etudier le sens de variation des suites (u_n) définies ci-dessous : (8 points)

a) $u_n = 2 - 5n \ (n \in \mathbb{N}) \rightarrow u_{n+1} - u_n = (2 - 5(n+1)) - (2 - 5n) = 2 - 5n - 5 - 2 + 5n = -5$ Pour tout $n \in \mathbb{N}$: $u_{n+1} - u_n < 0$: la suite (u_n) est décroissante.

b)
$$u_n = \frac{n-1}{n+9} \left(n \in \mathbb{N} \right) \Rightarrow \frac{u_{n+1}}{u_n} = \frac{\frac{(n+1)-1}{(n+1)+9}}{\frac{n-1}{n+9}} = \frac{\frac{n}{n+10}}{\frac{n-1}{n+9}} = \frac{n}{n+10} \times \frac{n+9}{n-1} = \frac{n^2+9n}{n^2+9n-10}$$
$$\frac{u_{n+1}}{u_n} = \frac{n^2+9n-10+10}{n^2+9n-10} = \frac{n^2+9n-10}{n^2+9n-10} + \frac{10}{n^2+9n-10} = 1 + \frac{10}{(n+10)(n-1)}$$

Il faut étudier le signe de (n+10)(n-1)

 $\rightarrow n \in \mathbb{N} \text{ donc } n \ge 0 \iff n+10 \ge 0+10 > 0 \text{ et } n-1 > 0 \iff n > 1$

Si n > 1: $\frac{u_{n+1}}{u_n} > 1$ donc la suite positive (u_n) est croissante à partir du rang 2.

c)
$$u_n = n^2 - 8n + 15$$
 $(n \in \mathbb{N})$ \Rightarrow la fonction associée est $f(x) = x^2 - 8x + 15$
 \Rightarrow sa dérivée est $f'(x) = 2x - 8$ et $f'(x) > 0 \Leftrightarrow 2x - 8 > 0 \Leftrightarrow x > 4$.

La fonction associée est croissante pour x > 4, la suite (u_n) est croissante à partir du rang 5.

d)
$$u_n = 0, 4^n \ (n \in \mathbb{N}) \rightarrow \frac{u_{n+1}}{u_n} = \frac{0, 4^{n+1}}{0, 4^n} = \frac{0, 4^n \times 0, 4}{0, 4^n} = 0, 4$$

La suite (u_n) est positive et $\frac{u_{n+1}}{u_n} < 1$: la suite (u_n) est décroissante pour tout $n \in \mathbb{N}$.

Exercice 4 (3 points)

Suite à un héritage, Magalie place la somme de 30 000 euros à un taux fixe de 3 %.

On peut décrire cette situation à l'aide de la suite suivante : $\begin{cases} u_0 = 30000 \\ u_{n+1} = 1,03 \times u_n \end{cases}.$

1) Compléter le programme python permettant de savoir quel sera le montant du placement au bout de 5 ans :

$$u = 30000$$


```
for i in range(1,6):
 u = u * 1.03
 print (u)
```

2) Magalie souhaite savoir dans combien d'années son capital aura doublé. Compléter le programme python suivant permettant de répondre à cette question :

```
u = 30000

n = 0

while u < 60000:

u *= 1.03

n += 1

print("Le nombre d'années est", n)
```

3) Question bonus : avec votre calculatrice, déterminer le nombre d'années recherché à la question précédente.

Le nombre d'années est 24