

Notre Dame de La Merci Problèmes sur la dérivation

Exercice 1

Soit f la fonction définie sur \mathbb{R} par :

$$f(x) = -16x^3 + 12x^2 - x + 14$$

On note C la courbe représentative de f, la tangente T_a à C en a et d la droite d'équation y=-x-4. Pour quelle(s) valeur(s) de a la droite d est-elle parallèle à T_a ?

Exercice 2

Soit la fonction
$$f$$
 définie sur \mathbb{R} par : $f(x) = -\frac{1}{6}x^3 + \frac{1}{2}x^2 - x + 14$

On note C_f la courbe représentative de f, T_a la tangente à C_f en a et d la droite d'équation y = -x - 4. Pour quelle(s) valeur(s) de a la droite T_a est-elle parallèle à d?

Exercice 3

Déterminer l'équation d'une droite qui est à la fois tangente à la parabole $y = x^2$ et à l'hyperbole $y = \frac{1}{x}$.

Notre Dame de La Merci - Montpellier - CORRIGE - M. Quet

Exercice 1

Soit la fonction f définie sur \mathbb{R} par : $f(x) = -16x^3 + 12x^2 - x + 14$

On note C_f la courbe représentative de f, T_a la tangente à C_f en a et d la droite d'équation y = -x - 4.

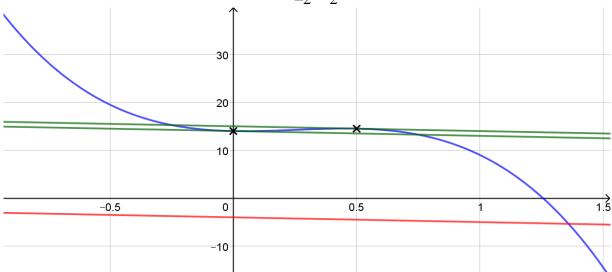
Pour quelle(s) valeur(s) de a la droite T_a est-elle parallèle à d?

Deux droites parallèles ont le même coefficient directeur et la dérivée est égale à la pente de la tangente en un point. On doit résoudre l'équation :

$$f'(x) = -1$$
 avec $f'(x) = -48x^2 + 24x - 1$

Ainsi:
$$-48x^2 + 24x - 1 = -1 \iff -48x^2 + 24x = 0 \iff 24x(-2x+1) = 0$$

Soit
$$x = 0$$
, soit $-2x + 1 = 0 \iff -2x = -1 \iff x = \frac{-1}{-2} = \frac{1}{2}$



Exercice 2

Soit la fonction
$$f$$
 définie sur \mathbb{R} par : $f(x) = -\frac{1}{6}x^3 + \frac{1}{2}x^2 - x + 14$

On note C_f la courbe représentative de f, T_a la tangente à C_f en a et d la droite d'équation y = -x - 4.

Pour quelle(s) valeur(s) de a la droite T_a est-elle parallèle à d?

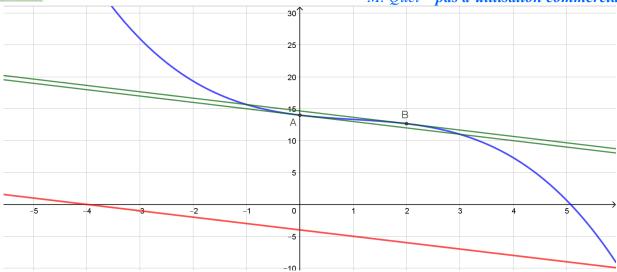
soit x=0,

Deux droites parallèles ont le même coefficient directeur et la dérivée est égale à la pente de la tangente en un point. On doit résoudre l'équation :

$$f'(x) = -1$$
 avec $f'(x) = -\frac{1}{6} \times 3x^2 + \frac{1}{2} \times 2x - 1 = -\frac{1}{2}x^2 + x - 1$

Ainsi:
$$-\frac{1}{2}x^2 + x - 1 = -1 \iff -\frac{1}{2}x^2 + x = 0 \iff x\left(-\frac{1}{2}x + 1\right) = 0$$

soit
$$-\frac{1}{2}x+1=0 \iff -\frac{1}{2}x=-1 \iff x=-1\times\left(\frac{-2}{1}\right)=2$$



Exercice 3

Déterminer l'équation d'une droite qui est à la fois tangente à la parabole $y = x^2$ et à l'hyperbole $y = \frac{1}{x}$.

Un schéma avec geogebra permet de mieux comprendre l'énoncé.

On pose
$$f(x) = x^2$$
 et $g(x) = \frac{1}{x}$, $f'(x) = 2x$ et $g'(x) = \frac{-1}{x^2}$.

Les tangentes à la parabole $y = x^2$ en un point d'abscisse a sont de la forme :

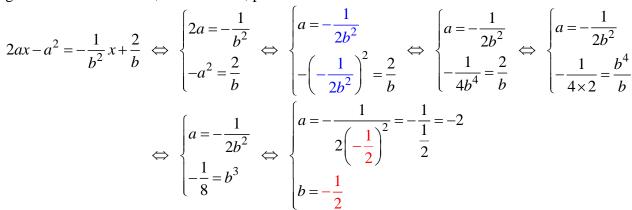
$$y = f'(a)(x-a) + f(a)$$

= $2a(x-a) + a^2 = 2ax - a^2$

Les tangentes à l'hyperbole $y = \frac{1}{x}$ en un point d'abscisse b sont de la forme :

$$y = g'(b)(x-b) + g(b)$$
$$= \frac{-1}{b^2}(x-b) + \frac{1}{b} = -\frac{1}{b^2}x + \frac{2}{b}.$$

Si ces tangentes sont confondues, on doit avoir, pour tout réel x:



La tangente commune a pour expression :

En prenant
$$a = -2$$
: $y = 2 \times (-2)x - (-2)^2 = -4x - 4$

En prenant
$$b = -\frac{1}{2}$$
: $y = -\frac{1}{\left(-\frac{1}{2}\right)^2}x + \frac{2}{-\frac{1}{2}} = -4x - 4$

